42 research outputs found

    Increasing wood mobilization through Sustainable Forest Management in protected areas of Italy

    Get PDF
    The European Community has long recognized the need to further promote renewable energy. Under the overall objective to support and enhance sustainable management, the promotion of the use of forest biomass could help to mitigate climate change by substituting fossil fuel, increasing carbon stock in wood products and improve energy self-sufficiency enhancing security of supply and providing job opportunities in rural areas. To what extent Italian forests can satisfy an increased wood demand, without compromising the others Ecosystem Services (ESs) remains an open question. Our aim was to assess the potential supply of woody biomass from the network of protected areas in Italy considering the felling constraints. We estimated the theoretical annual potential increment from forest inventory data performing a correlation with the Corine Land Cover 2006 at the IV level with a 1:100,000 resolution elaborated in a GIS (Geographic Information System) environment. The average annual potential increment at national level available for felling was 4.4 m3ha-1. Within the network of protected areas (EUAP and Natura 2000), the average annual increment, available to felling, was 0.98 m3ha-1, respectively, 0.81 m3ha-1 from coppice and 1.14 m3ha-1 from non-coppice forests. Based on data obtained from this study, the availability of wood materials could be increased of almost 20 % at national level by pursuing an active management within the network of protected areas. In Italy, the actual level of resource utilization is rather low; increasing felling together with the implementation of an active management within protected areas could allow satisfying, theoretically, the Italian wood consumption

    UAV-based LiDAR for high-throughput determination of plant height and above‐ground biomass of the bioenergy grass arundo donax

    Get PDF
    Replacing fossil fuels with cellulosic biofuels is a valuable component of reducing the drivers of climate change. This leads to a requirement to develop more productive bioenergy crops, such as Arundo donax with the aim of increasing above-ground biomass (AGB). However, direct measurement of AGB is time consuming, destructive, and labor-intensive. Phenotyping of plant height and biomass production is a bottleneck in genomics- and phenomics-assisted breeding. Here, an unmanned aerial vehicle (UAV) for remote sensing equipped with light detection and ranging (LiDAR) was tested for remote plant height and biomass determination in A. donax. Experiments were conducted on three A. donax ecotypes grown in well-watered and moderate drought stress conditions. A novel UAV-LiDAR data collection and processing workflow produced a dense three-dimensional (3D) point cloud for crop height estimation through a normalized digital surface model (DSM) that acts as a crop height model (CHM). Manual measurements of crop height and biomass were taken in parallel and compared to LiDAR CHM estimates. Stepwise multiple regression was used to estimate biomass. Analysis of variance (ANOVA) tests and pairwise comparisons were used to determine differences between ecotypes and drought stress treatments. We found a significant relationship between the sensor readings and manually measured crop height and biomass, with determination coefficients of 0.73 and 0.71 for height and biomass, respectively. Differences in crop heights were detected more precisely from LiDAR estimates than from manual measurement. Crop biomass differences were also more evident in LiDAR estimates, suggesting differences in ecotypes’ productivity and tolerance to drought. Based on these results, application of the presented UAV-LiDAR workflow will provide new opportunities in assessing bioenergy crop morpho-physiological traits and in delivering improved genotypes for biorefining.</jats:p

    [Thunderstorm and asthma outbreaks during pollen season]

    Get PDF
    An increasing body of evidence shows the occurrence of asthma epidemics, sometimes also severe, during thunderstorms in the pollen season in various geographical zones. The main hypothesis explaining association between thunderstorms and asthma claims that thunderstorms can concentrate pollen grains at ground level; these grains may then release allergenic particles of respirable size in the atmosphere after their rupture by osmotic shock. During the first 20-30 minutes of a thunderstorm, patients suffering from pollen allergy may inhale a high concentration of the allergenic material dispersed into the atmosphere, which can, in turn, induce asthmatic reactions, often severe. Subjects without asthma symptoms but affected by seasonal rhinitis can also experience an asthma attack. All subjects affected by pollen allergy should be alerted to the danger of being outdoors during a thunderstorm in the pollen season, as such events may be an important cause of severe bronchial obstruction. Considering this background, it is useful to predict thunderstorms during pollen season and, thus, to prevent thunderstorm-related clinical event. However, it is also important to focus on therapy, and it is not sufficient that subjects at risk of asthma follow a correct therapy with bronchodilators, but they also need to inhale corticosteroids, using both in case of emergency

    Scattering Attenuation Images of the Control of Thrusts and Fluid Overpressure on the 2016–2017 Central Italy Seismic Sequence

    Get PDF
    Deep fluid circulation likely triggered the large extensional events of the 2016–2017 Central Italy seismic sequence. Nevertheless, the connection between fault mechanisms, main crustal-scale thrusts, and the circulation and interaction of fluids with tectonic structures controlling the sequence is still debated. Here, we show that the 3D temporal and spatial mapping of peak delays, proxy of scattering attenuation, detects thrusts and sedimentary structures and their control on fluid overpressure and release. After the mainshocks, scattering attenuation drastically increases across the hanging wall of the Monti Sibillini and Acquasanta thrusts, revealing fracturing and fluid migration. Before the sequence, low-scattering volumes within Triassic formations highlight regions of fluid overpressure, which enhances rock compaction. Our results highlight the control of thrusts and paleogeography on the sequence and hint at the monitoring potential of the technique for the seismic hazard assessment of the Central Apennines and other tectonic regions

    A Three-Step Neural Network Artificial Intelligence Modeling Approach for Time, Productivity and Costs Prediction: A Case Study in Italian Forestry

    Get PDF
    The improvement of harvesting methodologies plays an important role in the optimization of wood production in a context of sustainable forest management. Different harvesting methods can be applied according to forest site-specific condition and the appropriate mechanization level depends on a number of factors. Therefore, efficiency and functionality of wood harvesting operations depend on several factors. The aim of this study is to analyze how the different harvesting processes affect operational costs and labor productivity in typical small-scale Italian harvesting companies. A multiple linear regression model (MLR) and artificial neural network (ANN) have been carried out to predict gross time, productivity and costs estimation in a series of qualitative and quantitative variables. The results have created a correct statistical model able to accurately estimate the technical parameters (work time and productivity) and economic parameters (costs per unit of product and per hectare) useful to the forestry entrepreneur to predict the results of the work in advance, considering only the values detectable of some characteristic elements of the worksite

    RETRACE-3D PROJECT, a multidisciplinary approach for the construction of a 3D crustal model: first results and seismotectonic implications

    Get PDF
    The RETRACE-3D (centRal italy EarThquakes integRAted Crustal modEl) Project has been launched with the ambitious goal to build, as first result, a new, robust, 3D geological model of broad consensus of the area struck by the 2016-2018 Central Italy seismic sequencePublishedBologna3T. Sorgente sismica4T. SismicitĂ  dell'Itali

    The Making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18)

    Get PDF
    ABSTRACT: The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models' weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∌20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH >5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH >3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH >1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning

    Prospettive e potenzialitĂ  della digitalizzazione del settore forestale in Italia

    Get PDF
    Information and Communication Technologies (ICT) play a key role for improving the implementation of sustainable forest management at local, regional, and global level. The ICT potential to easily exploit a wider and more up-to-date set of information on the economic, environmental, and so- cial value of forests is of relevant help for the daily work of technicians, land owners, and companies in boosting the efficiency and effectiveness of forest management. The concept of “Precision Forestry” (PF) was developed from the early 2000s, as a branch of precision farming or precision agriculture. PF includes the use of ICT, remote and proximal sensing technologies, and other devices to coordinate and control several processes on a spatial scale (“Precision”) for monitoring, planning, and managing forest resources (“Forestry”). The aim of this monography is to collect and describe some of the most important PF experiences applied or potential- ly useful for the Italian forestry sector. It may represent a reference guide for the stakeholders, such as forest owners, professional technicians, public administrators, and policy makers. The book includes eleven chapters reviewing the main tech- nological tools available in the Italian context and the most recent advances of ICT in forestry, also focusing on the strengths and weaknesses of their practical implementation. The opportunities and challenges of implementing PF meth- ods, practices and technologies are also discussed. In the first two chapters the precision forestry concept and its historical development are introduced. In the third chap- ter some basic elements of ICT, GIS, Global Navigation Satellite Systems (GNSS), remote/proximal sensing, and related technologies which are essential for a better compre- hension of PF applications are recalled. In chapter 4 recent advances in large scale forest inventories with a focus on mapping and on the spatial estimation of forest variables integrating field surveys and multisource re- motely sensed data are described. Current advancements in the acquisition of field information including Terrestrial La- ser Scanning (TLS), new digital dendrometers, tree-talkers, terrestrial cameras, and APP for portable devices such as smartphones or tablets for dendrometric tree measures and new citizen science applications to support quantitative and qualitative spatial estimation of forest variables over large areas (i.e., forest health, fuel types) are also presented. The chapter ends up with the description of some experiences in the implementation of Forest Information Systems in Italy to provide a simple open-access to such new generation of spatial forest information. In chapter 5 PF tools, instruments, and technologies to sup- port sustainable forest management are illustrated. APPs developed to acquire field plots data to simulate manage- ment operations, the application of photogrammetric tech- nologies from Unmanned Aerial Vehicles and TLS data for monitoring with high-spatial scale forest monitoring and for acquiring indicators at single tree level are presented. A de- tailed description of new user-friendly tools for forest roadplanning, design and construction, as well as forest opera- tion planning is also included. Precision forest tree farming (with particular reference to poplar cultivation), useful to promote and increase the prof- itability and sustainability of forest plantations within the Italian context is described in chapter 6. The innovation and enhancement within the supply chain of wood plantations (from planting to harvesting, including monitoring and identification of stress) by soil proximal sensing techniques, Early Warning Systems, and specific software are highlight- ed. Considering the even higher market demands, promoted by the large-scale planting programs for climate changes mit- igation and the demands for propagation material for en- vironmental recovery, innovative techniques and methods supported by ICT in the forest nursery sector are described in chapter 7. In chapter 8 available technologies related to precision har- vesting are analyzed and described taking into consideration the wood chain efficiency, by means of improved commu- nications between the owner/buyer and operators as well as among machineries used in forest operations, health and safety of forest operators, environmental impacts mitigation and recovery, and operators training. Advanced communi- cation systems and sensors for the exchange of data and information between machines, machine-equipments and/or machine-operators, teleoperations and automation are also described. Chapters 9 and 10 are related to wood products traceabil- ity, timber quality assessment as well as the technologies for the optimization of wood transformation processes. The concepts of wood product traceability and tracing, togeth- er with latest digital technologies for the identification and tracking of the logs (i.e., fingerprinting and RFID), are de- tailly reported. Chapter 11 is finally dedicated to the relationship between the EU policy framework and the digitalization process in both agricultural and forestry sectors. The book summarizes, under a proactive and homogeneous framework, PF methods, tools and technologies in relation with the digital transition of the Italian forestry sectors. The authors hope this book will be useful for improving the implementation of sustainable forest management practic- es at all levels in Italy, providing a comprehensive review useful for policy makers, technicians, forestry owners and students

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF
    corecore